
Checking for Circular Dependencies in Distributed

Stream Programs

Dai Bui
Hiren Patel
Edward A. Lee

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2011-97

http://www.eecs.berkeley.edu/Pubs/TechRpts/2011/EECS-2011-97.html

August 29, 2011

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
29 AUG 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
Checking for Circular Dependencies in Distributed Stream Programs

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Electrical Engineering and
Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This work presents a cyclic dependency analysis for streambased programs. Specifically, we focus on the
cyclo-static dataflow (CSDF) programming model with control messages through teleport messaging as
implemented in the StreamIt framework. Unlike existing cyclic dependency analyses, we allow overlapped
teleport messages. An overlapped teleport message is one that traverses actors that themselves transmit
teleport messages, which can complicate the stream graph topology with teleport messages. Therefore the
challenge in this work is to decide whether such stream graphs are feasible in the presence of such complex
teleport messages. Our analysis addresses this challenge by first ensuring that the stream graph with
teleport messages is feasible, and then computing an execution schedule for the CSDF graph in the
presence of complex overlapped teleport messaging constraints. Consequently, our analysis accepts a
larger class of CSDF stream graphs with complex teleport messaging topologies for execution.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

12

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2011, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

This work was supported in part by the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives support from
the National Science Foundation (NSF awards #0720882 (CSR-EHS:
PRET), #1035672 (CPS: PTIDES) and #0931843 (ActionWebs)), the U. S.
Army Research Office (ARO #W911NF-07-2-0019), the U. S. Air Force
Office of Scientific Research (MURI #FA9550-06-0312), the Air Force
Research Lab (AFRL), the Multiscale Systems Center (MySyC), one of six
research centers funded under the Focus Center Research Program, a
Semiconductor Research Corporation program, and the following
companies: Bosch, National Instruments, Thales, and Toyota.

Checking for Circular Dependencies
in Distributed Stream Programs

Dai N. Bui, Hiren D. Patel, Edward A. Lee
{daib,eal}@eecs.berkeley.edu, h.patel@ece.uwaterloo.ca

University of California, Berkeley

Abstract
This work presents a cyclic dependency analysis for stream-
based programs. Specifically, we focus on the cyclo-static dataflow
(CSDF) programming model with control messages through tele-
port messaging as implemented in the StreamIt framework. Unlike
existing cyclic dependency analyses, we allow overlapped teleport
messages. An overlapped teleport message is one that traverses ac-
tors that themselves transmit teleport messages, which can compli-
cate the stream graph topology with teleport messages. Therefore,
the challenge in this work is to decide whether such stream graphs
are feasible in the presence of such complex teleport messages. Our
analysis addresses this challenge by first ensuring that the stream
graph with teleport messages is feasible, and then computing an
execution schedule for the CSDF graph in the presence of complex
overlapped teleport messaging constraints. Consequently, our anal-
ysis accepts a larger class of CSDF stream graphs with complex
teleport messaging topologies for execution.

General Terms Languages, Semantics, Design

Keywords Streaming, Dependency analysis, Scheduling, Dead-
lock detection.

1. Introduction
Streaming applications are an important class of applications com-
mon in today’s electronic systems. Examples of streaming appli-
cations constitute image, video and voice processing. To facilitate
precise and natural expression of streaming applications, research
proposes several streaming languages such as [1, 5, 7, 15, 21]
that allow programmers to faithfully model streaming applications.
These languages employ high-level domain abstractions instead
of low-level languages such as C to enable portability and auto-
matic optimizations for a variety of target architectures including
novel multicore platforms. For example, static dataflow (SDF) [19],
cyclo-static dataflow (CSDF) [3], multidimensional synchronous
dataflow (MDSDF) [22], and Kahn process network(KPN) [14] are
models of computation well-suited for modeling and synthesis of
streaming applications.

In those above models of computations for streaming applica-
tions, SDF and its derivatives, such as CSDF and MDSDF, are more
static than KPN, however, compilers could optimize applications

[Copyright notice will appear here once ’preprint’ option is removed.]

in those domains for buffer space, scheduling, balanced mapping
on multicore more easily than for general KPN applications. How-
ever, the static nature of SDF and its derivatives makes it difficult to
implement more dynamic streaming applications such as changing
rates of tokens that a task can produced or parameters used to com-
pute with data. Several efforts have tried to address the issue such
as parameterized dataflow [2] used in modeling image processing
systems [28].

However, as streaming algorithms become more and more dy-
namic and complicated to enable higher quality of service while
keeping underlying hardware systems at a reasonable price and
power-efficient, streaming languages’ original abstractions may no
longer be able to capture all new complexities in a natural way. To
solve the above problem, language designers should come up with
new language extensions to express new complexities more conve-
nient. Teleport messaging (TMG) in the StreamIt language [30] is
an example.

1.1 StreamIt Language and Compiler
StreamIt [29] is a language for streaming applications based on
the CSDF [19] programming model, a generalization of the Syn-
chronous Dataflow (SDF) [19] model of computation. The lan-
guage exploits inherent task-level parallelism and predictable com-
munication properties of CSDF to partition and mapping a stream
program onto different multicore architectures [8, 11]. A StreamIt
application is a directed graph of autonomous actors connected via
FIFO buffers of predictable sizes due to static production and con-
sumption rates of actors. This static feature of CSDF enables com-
pilers to optimize, and transform programs to efficiently deploy
them onto different architectures. The CSDF model of computa-
tion is suitable for expressing regular and repetitive computations.
However, CSDF makes it difficult to express dynamic streaming al-
gorithms because of its requirement to enforce periodic and static
schedules. As a result, dynamic streaming algorithms require sub-
stantial modifications to the streaming program structures itself,
which makes using CSDF a complex task for such applications.

1.2 Control Messages
In contrast to high-frequency regular data messages such as those
typically modeled in CSDF, infrequent control messages sent be-
tween actors. Control messages are necessary to enable implement-
ing more dynamic streaming application algorithms, e.g. they could
be used to adjust the employed protocol, and the compression rate.
Manually integrating infrequent low rate control messages into fre-
quent high-rate streams would complicate the overall structure of
an application, which then makes it difficult for users to maintain
and debug such an application, and also potentially reduce its ef-
ficiency. It is useful to separate control from data computation, as
in [2], so that compiler optimization methods can be applied to gen-
erate more efficient code.

1 2011/8/29

!"#

!"#

$%&'()%

*+,%-)
!"#

./

!"#

!"#

!"#

!"#!"#

!"#

!"#!"#

!"#

!"#

!"#

!"#

!"#

0"

01

02

0./

(a) FIR exam-
ple

!"#$%&#'
()*

()*

+,"-./
()*

()*
!"#$%&#'

()*

()*

()*
!"#$%&#'

()*

()*

!"#$%&#'
()*

()*

+,"-./
()*

()*
!"#$%&#'

()*

()*

()*
!"#$%&#'

()*

()*

!"#$%&#'
()*

()*

+,"-./
()*

()*
!"#$%&#'

()*

()*

()*
!"#$%&#'

()*

()*

!"#$%&#'
()*

()*

+,"-./
()*

()*
!"#$%&#'

()*

()*

()*
!"#$%&#'

()*

()*

!"#$%&'()*+ ,&%$%&'()*+-.&/0*'12$*'3&

)

0

1 0

1

2

2

20

3

3

4

3&++4(&

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

(b) New weights are attached with data tokens and
processed at actors before processing data

!"#$%&#'
()*

()*

+,"-./
()*

()*
!"#$%&#'

()*

()*

()*
!"#$%&#'

()*

()*

!"#$%&#'
()*

()*

+,"-./
()*

()*
!"#$%&#'

()*

()*

()*
!"#$%&#'

()*

()*

!"#$%&#'
()*

()*

+,"-./
()*

()*
!"#$%&#'

()*

()*

()*
!"#$%&#'

()*

()*

!"#$%&#'
()*

()*

+,"-./
()*

()*
!"#$%&#'

()*

()*

()*
!"#$%&#'

()*

()*

!"#$%&'()*+ ,&%$%&'()*+-.&/0*'12$*'3&

)

0

1 0

1

2

2

20

3

3

4

3&++4(&

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

()*

(c) New weights are sent to actors via teleport mes-
sages before the arrival of data.

Figure 1. Adding dynamicities to an FIR computation

Thies et al. in [30] give a TMG model for distributed stream pro-
grams. TMG is a mechanism that implements control messages for
stream graphs. The TMG mechanism is designed not to interfere
with original dataflow graphs’ structures and scheduling, therefore
a key advantage of TMG is that it incorporates control messages
without requiring the designer to restructure the stream graph, re-
compute production and consumption rates, and further complicate
the program code for the actors. However, it still needs to be precise
relatively to data messages. For instance, a set of new parameters
specified in a control message should only take effect on some des-
ignated data messages. This requires synchronization methods be-
tween data messages and control messages. Moreover, the structure
of stream graphs with TMG exposes dependencies that allow auto-
mated analytical techniques to reason about timing of control mes-
sages. Naturally, stream graph compilers can implement these anal-
ysis techniques. Users can also change latency of messages without
changing the structures of stream graphs.

Let us illustrate the problem with an example. Consider the Fi-
nite Impulse Response (FIR) example from [30], shown in Fig-
ure 1(a). FIR is a common kind of filter in digital signal process-
ing, where the output of the filter is a convolution of the input se-
quence with a finite sequence of coefficients. The FIR example is
composed of a Source, a Printer, and 64 Multiply and Add ac-
tors. Each Multiply actor has a single coefficient w, called a tap
weight, of a FIR filter.

Now suppose that during the execution at some iteration, the
Source actor detects some condition, and it decides to change the
tap weights of the Multiply actors. The new set of weights should
only be used to compute with data produced by the Source actor
during and after its current execution.

One way to ensure that the new coefficients are only used with
the appropriate data is to attach the new set of tap weights with data
packets sent from the source, as in Figure 1(b). In the figure, each
time a data token attached to a message with new weights arrives,
each Multiply actor will detach the message and update its weight
and use the new weight to compute with the just arrived data token.
However, this approach is not efficient; it changes the structure and
data packets, and would require an aggressive compiler analysis
to optimize a program as well as minimize communication buffer
sizes between actors in a stream graph.

In contrast, with the teleport approach, illustrated in Figure 1(c),
the Source actor could send teleport messages (TM) containing

new weights to each Multiply actor before data tokens that need
to be computed with new weights arrive. This approach provides a
clean separation between control execution and data computation.
This separation makes it easier to maintain and debug programs,
it also helps avoid error-prone task of manual embedding and pro-
cessing control information within data tokens.

The TMG mechanism requires synchronization between data
tokens and control messages, so that a control message is only
handled just before the computation of the appropriate data token.
The theory of StreamIt TMG synchronization method provides an
SDEP function to accomplish this synchronization. However, the
SDEP function alone is not powerful enough to enable the StreamIt
compiler to handle the case where several TMs are overlapped in
a stream graph. This limitation hinders the deployment of more
complicated stream programs in StreamIt.

1.3 Circular Dependencies
Figure 1(c) uses a simplified notion of TMs, where the latency of
the message is implicitly set to 0. Latency constraints are needed in
order to specify which instance of an actor can receive TMs from
which instance of another actor. A integer parameter called latency
annotating a TM is used to achieve this. In Figure 1(c), all latencies
are implicitly zero. This means that the nth execution of Source
may send a TM to the nth (but no earlier nor later) execution of
each of the Multiply actors.

In general, latencies can be different from zero, as shown in
Figure 2. It is then possible that there does not exist a schedule that
delivers TMs with the desired latencies. The left side of Figure 2
shows an example where the set of latency constraints is not satis-
fiable. Let us explain the example. Let us denote by Am the mth

execution of actor A. Suppose that actor A is currently at its nth

execution. Then, we have the following constraints:

• The latency constraint imposed by TMs sent from actor D
to actor A requires that An+1 wait for possible TMs from
Dn before it can execute. In other words, An+1 depends on
Dn and An+1 has to execute after Dn. Let’s denote this as
Dn ≺ An+1.
• As Bn+1 consumes one token produced by An+1, we have
An+1 ≺ Bn+1.

2 2011/8/29

T T T T T T T T T T T T ..,. ... T 'f

• We assume that multiple executions of a single actor must
proceed in sequential order, so Bn+1 ≺ Bn+2, and hence, of
course, Bn+1 ≺ Bn+10

• Again, the latency imposed by teleport messages sent from
actor B to actor C constrains Cn to wait for a possible TM
from Bn+10, therefore, Bn+10 ≺ Cn.
• Finally, Dn consumes one token produced by Cn, therefore
Cn ≺ Dn.

Summing up, we have the set of dependency constraints for
the example: Dn ≺ An+1 ≺ Bn+1 ≺ Bn+10 ≺ Cn ≺ Dn.
We can see that these dependency constraints create a cycle, so no
evaluation order exists and the system is deadlocked.

!

"

#

$
%&'

%&'

%&'

%&'

%&'

%&'
!

"

#

$
%&'

%&'

%&'

%&'

%&'

%&'

Overlapping of
teleport messages

Non-overlapping of
teleport messages

()&(

*

)+

Figure 2. Overlapping and non-overlapping scenarios of teleport
messages.

There are two factors creating cyclic dependencies of actor
executions for a stream graph: i) the structure of the stream graph,
and ii) the latencies of teleport messages. Let us take an example to
illustrate the importance of the two factors.

Now, we keep the same graph structure in the left side of
Figure 2, however, we suppose that the latency for TMs between
actor B an actor C is 0. In this case, there exists a valid evaluation
order: . . . ≺ An ≺ Bn ≺ Cn ≺ Dn ≺ An+1 ≺ Bn+1 ≺
We can see that for the same stream graph structure, different TM
latencies could result in completely different situations; the first one
is a deadlocked while the second one has a valid schedule.

Thies et al. [30] call the graph structure on the left of Fig-
ure 2 “overlapping constraints,” because the paths between actors
involved in TMs have some actors in common. The compiler sim-
ply rejects graph structures that have overlapping TM situations
regardless of message latencies even if the latencies could result in
valid schedules, as is case if the latency between actor B and actor
C is 0. The StreamIt compiler only allows non-overlapping TMs,
as on the right side of Figure 2. This conservative approach reflects
an underdeveloped theory of execution dependency in the StreamIt
compiler.

The first contribution of our paper is a method for checking
circular dependencies of distributed stream programs in the pres-
ence of overlapping of TMs by introducing static finite dependency
graphs for infinite sequences of executions then proposing an al-
gorithm for directly constructing such graphs from stream graphs.
The second contribution of this paper is to show how to find an
execution order for a stream graph when there is no circular de-
pendencies by solving a linear program. We have implemented our
checking and ordering methods as a backend for the StreamIt com-
piler.

2. Background
2.1 Programming Model

!
"#$

"%$

&"%$ "#$ '"($ "%$

)
"%$

"%$

*"($ "#$

Figure 3. Cyclic Static Dataflow model of computation

The CSDF/SDF model of computation captures the seman-
tics of streaming applications and allows several optimization and
transformation techniques for buffer sizes [23], partitioning and
mapping of stream graphs onto multicore architectures [8, 9, 29],
and computational methods [10, 18].

In the CSDF model of computation, a stream program, given as
a graph, is a set of actors communicating through FIFO channels.
Each actor has a set of input and output ports. Each channel con-
nects an output port of an actor to an input port of another actor.
Each actor cyclically executes through a set of execution steps. At
each step, it consumes a fixed number of tokens from each of its
input channels and produces a fixed number of tokens to each of
its output channels. This model of computation is interesting as it
allows static scheduling with bounded buffer space.

Figure 3 shows an example of a CSDF stream graph. Actor A
has two output ports. Each time actor A execute, it produces 2
tokens on its lower port and 1 token on its upper port Actor B
consumes 1 and produces 2 tokens each time it executes. Actor
E alternately consumes 0 and 1 token on its upper port and 1
and 0 tokens on its lower port each time it executes. The theory
of CSDF and SDF provides algorithms to compute the number of
times each actor has to execute within one iteration of the whole
stream graph, so that the total number of tokens produced on each
channel between two actors is equal to the total number of tokens
consumed. In other words, the number of tokens on each channel
between actors remains unchanged after one iteration of the whole
stream graph. For example, in one iteration of the stream graph
in Figure 3, actors A,B,C,D,E have to execute 3, 3, 2, 2, 5
times respectively. A possible schedule for one iteration for the
whole stream graph is 3(A), 3(B), 2(C), 2(D), 5(E). This basic
schedule can be iteratively repeated. As we can see with this basic
schedule, the number of tokens on each channel remains the same
after one iteration of the whole stream graph. For instance, in the
channel betweenB andD, in one iteration,B produces 3 ·2 tokens
while D consumes 2 · 3 tokens.

2.2 Teleport Messaging
TMG enables executing an actor B asynchronously with an actor
A. Ordering constraints implied by a TM tagged with a latency,
which specifies message processing delay, must be enforced. The
latency parameter determines the execution of B at which the
TM handler in B is invoked. To enable this, actor B declares a
message handler function. Then, the container1 of actor A and
B then declares portal, a special type of variable, of the type
portal, as in Figure 4. Each portal variable is associated with
a specific type, e.g. portal, which is again associated with
specific actor type, e.g. B. A portal variable of type portal
could invoke messages handlers declared within B. This portal

1 Actors within a containter are similar to objects contained within another
object.

3 2011/8/29

variable is then passed to the entry function of actor A to enable
actor A to invoke the message handler functions of actor B with
some latency parameters. For example, for actor A to send a TM
to B with a latency of k means that on the kth iteration of firing
actor A, the TM is sent alongside with the data token to actor B.
Once the kth data token reaches actor B, actor B fires the message
handler before consuming the data token. Other actors, such as C
could also use the portal to send B a message.

!

"
#$%

#$%

&'()*+,"-

.'/)*0/1(

2*/3+1(

.

#$%

#$%

Figure 4. Example of teleport portal.

2.3 TMs Timing with SDEP

As TMs are sent between actors, it is mandatory that we need to
have a way to specify when TMs should be processed by receiving
actors as current (time when TMs are sent) status of receiving
actors could be not appropriate to process TMs. In other words, we
would need to find exact executions of receiving actors that TMs
should be processed. The following SDEP function provides a way
to find processing time of TMs for receiving actors.

Thies et al. [30] formally present an approach to compute the
invocation of actors based on their dependencies. We borrow their
formulation, and use it in our dependency analysis. We briefly
describe the semantics from [30] for the reader.

We first present Definition 1, which is a stream dependency
function SDEP that represents the data dependency of executions
of one actor on the execution of other actors in the stream graph.
SDEPA←B(n) represents the minimum number of times actor A
must execute to allow actor B to execute n times. This is based on
the intuition that an execution of a downstream actor requires data
from some execution of an upstream actor; thus, the execution of
the downstream actor depends on some execution of the upstream
actor. In other words, given an execution nth of a downstream actor
B, SDEP function could return the latest execution of a upstream
actorA that the data it produces, going though and being processed
by intermediate actors, will affect the input data consumed by
execution nth of actor B.

DEFINITION 1. (SDEP)

SDEPA←B(n) = min
φ∈Φ,|φ∧B|=n

|φ ∧A|

where Φ is the set of all legal sequences of executions, φ is a legal
sequence of execution and |φ ∧ B| is the number of times actor B
executes in the sequence φ.

Using the above SDEP function, we could formally specify when
TMs are processed as follows:

DEFINITION 2. Suppose that actor A sends a TM to actor B with
latency range [k1 : k2] during the nth execution of A. Then, we
consider two cases:

• If B is downstream of A, then the message handler must be
invoked in B immediately before its mth execution, where m is
constrained as follows:

n+ k1 ≤ SDEPA←B(m) ≤ n+ k2 (1)

• If B is upstream of A, then the message handler must be in-
voked in B immediately after its mth execution, where m is
constrained as follows:

SDEPB←A(n+ k1) ≤ m ≤ SDEPB←A(n+ k2) (2)

To illustrate the usage SDEP to find appropriate executions of
receiving actors, we take the FIR example in Figure 1(c) and try
to find the execution m of a Multiply that will need to process a
TM. Suppose that at the 5th execution (n = 5), the Source actor
sends a TM to a Multiply actor with latency k1 = k2 = 2. Then
we have:

n+ k1 ≤SDEPSource←Multiply(m) ≤ n+ k2

5 + 2 ≤SDEPSource←Multiply(m) ≤ 5 + 2

7 ≤SDEPSource←Multiply(m) ≤ 7

SDEPSource←Multiply(m) = 7

Each time the Source actor fires, it produces one token and
each time one Multiply actor fires, it produces one token and
consumes one token, therefore, in order for a Multiply actor fires
m times, the Source actor has to fires m times, in other words,
SDEPSource←Multiply(m) = m. Hence, m = 7.

2.4 SDEP Calculation
StreamIt computes the SDEP function using the simple pull sched-
ule [30]. For brevity, we refer the readers to [30] for further details
on the algorithm and details. However, to intuitively illustrate the
SDEP calculation, we take a simple example of actors B and D in
Figure 3. The SDEPB←D(m) is as in Table 1. In the example, when
D does not execute, it does not require and number of executions of
B. In order for D to execute the first time, it requires three tokens
on its input channel. Based on this requirement, the pull schedule
algorithm will try to pull three tokens from the supplier, actorB. To
supply the three tokens, B has to execute at least two times, there-
fore we have SDEPB←D(1) = 2. Similar, whenD wants to execute
one more time, it needs two more tokens so it will try to pull the two
tokens from B. Again, B has to execute one more time to supply
the two tokens and we have SDEPB←D(2) = 3.

m SDEPB←D(m)
0 0
1 2
2 3

Table 1. Dependency Function Example

Periodicity of SDEP: As CSDF is periodic, therefore SDEP is also
periodic. This means that one does not need to compute SDEP for all
executions, instead, one could compute SDEP for some executions
then based on the periodic property of SDEP to query future depen-
dency information. The following equation was adapted from [30]:

SDEPA←B(n) = i ∗ |S ∧A|+ SDEPA←B(n− i ∗ |S ∧B|) (3)

where S is the execution of actors within one iteration of a
stream graph and |S ∧ A| is the number of executions of actor A
within one iteration of its stream graph. i is some iteration such that
0 ≤ i ≤ p(n) where p(n) = n÷|S∧B| is the number of iterations
that B has completed by its execution n.2

2 We define a÷ b = ba
b
c

4 2011/8/29

3. Execution Dependencies
The StreamIt compiler relies on the SDEP dependency function to
determine when a TM handler could be invoked based on mes-
sage latencies. TMs actually impose constraints on execution or-
ders of actors on the path between senders and receivers as actors
cannot execute arbitrarily whenever data are available at their in-
puts, rather, TM receiving actors have to wait for possible TMs so
that they cannot execute too far ahead. Constraints on executions
of receiving actors will again constrain executions of intermediate
actors (actors between TMG senders and receivers). When inter-
mediate actors on the path between a sender and a receiver are not
involved in TMG communication, in other words, there are no TMs
overlapped as on the right side of Figure 2, only a single constraint
is imposed on execution orders and a valid message latency could
be easily checked using the following condition: an upstream mes-
sage cannot have a negative latency.

When some intermediate actors on the path between a sender
and a receiver are also involved in some other TMG communication
as on the left side of Figure 2, this scenario is called overlapping
of TMs or overlapping constraints by Thies et al. [30]. Because
additional constraints impose on execution orders of intermediate
actors, added constraints might make it impossible to schedule
executions of actors as in the example in Section 1.3 because of
circular dependencies.

Checking for this general scheduling problem with overlapping
of TMs is not straightforward as the SDEP stream dependence
functions are not linear, e.g. as in Table 1, due to mis-matching
input/output rates of actors.

To solve the above circular dependencies checking problem in
the presence of overlapping of TMs, we could exploit the graph
unfolding technique [25] to construct a directed graph that helps
reason about dependencies between executions of actors in a stream
graph.

However, to construct such a directed execution dependency
graph, we first need to characterize and classify all kinds of exe-
cution dependencies.

3.1 Actor Execution Dependencies
DEFINITION 3. Execution dependency: An execution e1 of an ac-
tor is said to be dependent on another execution e2 of some actor
(could be the same actor) when e1 has to wait until e2 has finished
before it can commit its result.

From our insight, we have three kinds of execution dependency as
follows:

• Causality dependency: The (n+ 1)th execution of A has to be
executed after the nth execution of A, or An ≺ An+1

• Data dependency: For two directly connected actors A and B
and actor B is a downstream actor of actor A, then an nth

execution of B, let’s call Bn, will be data-dependent on a mth

execution ofA, calledAm, ifBn consumes one or more tokens
produced by Am.
• Control dependency due to TMs sent between actors. As an

actor S at iteration nth sends a TM to an actor B with latency
[k1, k2], then for all the mth executions of R satisfying the
Definition 2, Rm is said to be control dependent on Sn as it
might consumes some control information from Sn.

3.2 Directed Execution Dependency Graph
To check for circular dependencies we would need to construct a
dependency graph and check for circles in that graph. If there is
no circle in a dependency graph, then the graph is just a directed
acyclic graph, and an evaluation order could be found using topo-
logical sort. Our dependency classification in the previous section

enables us to construct such a directed execution dependency graph
of actor executions.

The construction of such a directed dependency graph is done
in two steps. First, we simply replicate executions of actors in its
original CSDF model of computation. Second, we add causality
dependency, data dependency and control dependency edges to the
graph.

The first step could be done by expanding iterations of a CSDF
stream a graph. For example, we have a stream graph as in Figure 3.
Within one iteration of the whole stream graph, according to CSDF
model of computation, actors A,B,C and D execute 6, 3, 2 and 4
times respectively. Each execution of an actor is replicated as one
vertex in execution dependency graph as in Figure 5. Note that we
use Ai2 to denote the 2nd relative execution of actor A within the
ith iteration of the stream graph, this is equivalent to the (i∗6+2)th

absolute (from the beginning when the program starts) execution of
actor A as A executes 6 times in one iteration for the stream graph
in Figure 3. 3

In the second step, although dependency edge calculation is
based on our dependency classification, however, detailed methods
for calculating the dependency edges have not been presented. In
the following section, we will show how to calculate execution
dependencies for the second step.

3.2.1 Calculating Execution Dependencies
Although we enumerated three kinds of execution dependencies
in Section 3.1, so far we have not shown how to compute those
dependencies. Computing causality dependency is straightforward.

For data dependency edges, we utilize the SDEP function im-
plemented using the pull scheduling algorithm in [30]. For any
two connected actors A, upstream, and B downstream, we cre-
ate a dependency edge between the execution SDEPA←B(n)th of
A to the execution nth of B, we denote ASDEPA←B(n) ≺ Bn.
Note that Am ≺ Am+1 based on causality dependency condi-
tion, therefore, Bn � Am, ∀m = 1 → SDEPA←B(n). Thus,
we do not need to add any dependency edges between Bn and
Am, ∀m < SDEPA←B(n), as those dependencies are implicit and
could be inferred from Am ≺ Am+1 and ASDEPA←B(n) ≺ Bn.

Finally, for control dependency edges due to TMs, those depen-
dencies can already be computed using SDEP as proposed in [30].
If an actor S sends a TMs to an actor R with latencies [k1, k2].
Applying the Definition 2, we have two cases:

• If R is downstream of S, then create an edge Rm → Sn
s.t. n + k1 ≤ SDEPS←R(m) ≤ n + k2. However, be-
cause of the causality dependency and SDEP is monotonic,
e.g. Rm|SDEPS←R(m)=n+k1 � Rm|SDEPS←R(m)=n+k2 , and
we would like to have as few dependency edges as possi-
ble, therefore we only need to add one dependency edge
Rm|SDEPS←R(m)=n+k1 → Sn

• If R is upstream of S, then create an edge Rm → Sn such
that SDEPR←S(n + k1) ≤ m ≤ SDEPR←S(n + k2). For
the same reasons as in the previous case, we only add one
edge RSDEPR←S(n+k1)+1 → Sn. We need to add one to
SDEPR←S(n + k1) because the message handler at R is in-
voked after the execution SDEPR←S(n+ k1) of R.

3 To make this conversion clear, we take an example. Suppose that an actor
A has executed n times since a program starts and in each iteration of the
program, A executes a times. Then we can calculate that the execution An
belongs to i = n ÷ a iteration of the whole program (based on CSDF
semantics) and it is the r = (n mod i) execution of A within the ith

iteration of the program. In other words An ⇔ An÷an mod a. We call n the
absolute execution, r the relative execution, and i the iteration index. We
will use this conversion frequently in next sections.

5 2011/8/29

3.2.2 Illustrating Example
Let us come back to the example in Figure 3, however, now we
suppose that E sends TMs to A with latency 0 and B sends TMs
to D with latency -1, then the execution dependency graph is as in
Figure 5, where the causality dependency edges are exhibited using
arrows with dashed lines, data dependency edges are in dash-dot
arrows, and control dependency edges are in solid arrows.

We use the function SDEP between actors B and D in Table 1
to illustrate our method. For actors B and D, the dependency SDEP
function is given in Table 1, then for any iteration n of the stream
graph, we add data dependency edges Dn

1 → Bn2 and Dn
2 → Bn3

as in Figure 5 because within one iteration, the first execution of
D is data dependent on the second execution of B and the second
execution of D is data dependent on the third execution of B.

For control dependency edges, as TMs from actor B to D have
delays of k1 − 1, and SDEPB←D(n ∗ e(D) + 1) = (n ∗ e(B) +
3) − k1, ∀n ∈ N, where e(X) is the number of times actor X
executes within one iteration of a stream graph, therefore, we add
an edge Dn

1 → Bn3 . Similarly , SDEPB←D(n ∗ e(D) + 2) =
((n+ 1)∗e(B) + 1) +k1,∀n ∈ N, we add an edgeDn

1 → Bn+1
1 .

Although, Figure 5 only shows dependencies for a portion of a
whole infinite graph, the basic dependency structures of the whole
execution dependency graph are similar for all iterations n ∈ N,
except for some initial iterations, as CSDF model of computation
is periodic.

We can see that, the above naive graph construction process will
result in an infinite directed graph as the execution sequence of
a streaming application based on CSDF model of computation is
presumed to be infinite. Because an infinite directed graph could
not be used directly to check for cyclic dependency of actor execu-
tions, we need a way to translate them into a similar finite directed
graph that captures all dependency structures in the original infinite
graph.

4. Checking for Circular Dependencies
4.1 Dynamic/Periodic Graph
The technique for translating such infinite execution dependency
graphs into finite static graph is already available in the dy-
namic/periodic graph theories [13, 24] if we notice that the in-
finite execution dependency graphs are periodic similarly to the
dynamic/periodic graph definition below.

DEFINITION 4. A directed dynamic periodic graphG∞ = (V∞, E∞)
is induced by a static graph G = (V,E, T), where V is the set of
vertices, E is the set of edges, T : E → Zk is a weight function on
the edges of G, via the following expansion:

V∞ = {vp|v ∈ V, p ∈ Zk}
E∞ = {(up, vp+tuv |(u, v) ∈ E, tuv ∈ T, p ∈ Zk}

If we interpret tuv ∈ T as transit time representing the number
of k-dimensional periods it takes to travel from u to v along the
edge, then the vertex vp of G∞ could be interpreted as vertex v of
G in a k-dimensional period p and edge (up, vp+tuv) represents
travelling from u in period p and arriving at v tuv periods later.

Intuitively, a k-dimensional periodic graph is obtained by repli-
cating a basic graph (cell) in a k-dimensional orthogonal grid. Each
vertex within the basic graph is connected with a finite number of
other vertices in other replicated graphs and the inter-basic-graph
connections are the same for each basic graph.

Our observation is that an execution dependency graph of a
CSDF stream graph is an infinite 1-dimensional dynamic graph
with its basic graph composed of vertices that are actor executions
of the CSDF stream graph within one iteration. The basic cell

is repeatedly put in a 1-dimensional time grid. Data, causality
and control dependencies form directed edges between vertices.
Some of edges created by causality and control dependencies could
be inter-cell (inter-iteration) connections. As the CSDF model of
computation is periodic by nature, the pattern of the inter-cell
(inter-iteration) connections is the same for each cell (iteration).

Based on the above observation and the theory of infinite pe-
riodic graph, to check for cyclic dependency of an infinite depen-
dency graph with TM constraints, we could construct an equiva-
lent static finite graph. We then can prove that there is a cyclic
dependency in a execution dependency graph of a CSDF program
with added TM constraints iff the equivalent static graph has a cy-
cle with weight equal to 0. In the next section, we will show how
to translate 1-dimensional periodic graph in Figure 5 into a static
finite graph.

4.2 Translating to Static Finite Equivalent Graph
Figure 6(a) shows the equivalent static finite dependency graph of
the infinite execution dependency graph in Figure 5. In the graph,
all edges have do not have specified weights are of weight 0.

Intuitively, all the vertices within one arbitrary iteration, say it-
eration n, are kept to form vertices in the equivalent static graph,
however, iteration indices are removed, e.g. An1 becomes A1. Di-
rected edges between vertices within the one iteration are also kept
and their weights are set to 0. For directed edges cross iterations,
only outgoing edges (edges from this iteration to some other iter-
ations) are used to translate to equivalent edges in the new static
graph. The translation is done as follows, suppose that an outgoing
edge is Snx → Rmy , then we add a directed edge Sx → Ry with
weight n−m. n−m is called relative iteration, which is the gap be-
tween iterations of two actor executions. For example, the directed
edge Dn

2 → Bn+1
1 in Figure 5 becomes the edge D2 → B1 with

weight−1 in Figure 6(a). Note that an edge Sx → Ry is equivalent
to any edge Six → Rjy in the execution dependency graph as long
as i − j = n − m because of the repetitive nature of the CSDF
model of computation.

4.3 Graph Equivalence
We cite the following Lemma 1 from Lemma 1 in [24].

LEMMA 1. LetG = (V,E, T) be a static graph. For u, v ∈ V and
p, l ∈ Z, there is a one-to-one canonical correspondence between
the set of finite paths from up → vl in G∞ and the set of paths in
G from u to v with transit time l − p.

The above lemma is useful for proving the following theorem:

THEOREM 1. A dependency circle in an execution dependency
graph is equivalent to a cycle with length of zero in the equiva-
lent static graph.

Proof: Suppose that there is a circle in an execution dependency
graph, say Xn1

i1
→ Xn2

i2
→ . . . → Xnm

im
→ Xn1

i1
. By Lemma 1,

this circle is equivalent to a directed circle with edges (Xi1 →
Xi2), (Xi2 → Xi3), . . . ,(Xim−1 → Xim), (Xim → Xi1) of
weights (n1 − n2), (n2 − n3), . . . , (nm−1 − nm), (nm − n1),
respectively. The sum of the circle in the equivalent directed circle
is: (n1−n2)+(n2−n3)+ . . .+(nm−1−nm)+(nm−n1) = 0.

4.4 Detecting for Zero Cycles
We have shown that a circle of execution dependencies is equiv-
alent to a cycle of zero weight in an equivalent graph. However,
we have not shown how a cycle of zero weight is detected. In [13],
Iwano and Steiglitz propose an algorithm for detecting zero cycles
in an 1-dimensional4 static graph with complexity O(n3) (Theorem

4 Distances between vertices have only one dimension.

6 2011/8/29

!"
#

!"
$

!"
%

&"
#

&"
$

&"
%

'"#

'"$

("
#

("
$

)"#

)"$

)"%

)"*

!"+#
#

)",#*(",#
$

&"+#
#

-./01.23"4",#

&",#
%!",#

%

("+#
)"+#

#

'",#$

'"+#
#

5

-./01.23"4"

-./01.23"4"+#

)"6

Figure 5. The execution dependency trace of a CSDF
stream graph with teleport messaging is an infinite peri-
odic directed execution dependency graph

!"

!#

!$

%"

%#

%$

&"

&#

'"

'#

("

(#

($

()

*

+

"
,"

"
"

"
"

(-

"

(a) Static equivalent execution dependency graph

!"

!#

!$

%"

%#

%$

&"

&#

'"

'#

("

(#

($

()"

*

"
+"

"
" " "

(,

"

#

(b) Static execution dependency graph without zero cycles

Figure 6. Static graphs

4 in [13]) where n is the number of vertices in the 1-dimensional
static graph.

4.5 Illustrating Example
To illustrate the circle checking method better, we take the trans-
lated static equivalent graph in Figure 6(a). We run the cycle de-
tection algorithm in [13] and detect a zero cycle, A1, E5, D2, B1,
this zero cycle in the static graph is equivalent to the cycle of de-
pendencies in the execution dependency graph in Figure 5, An1 �
En−1

5 � Dn−1
2 � Bn1 � An1 .

Now, when the latency of TMs fromE toA is -4, the equivalent
static graph is shown on Figure 6(b). The graph has no zero cycles,
thus, there is no circle of dependencies in the execution dependency
graph, therefore, the set of constraints imposed by teleport commu-
nication is feasible.

5. Direct Construction of Static Graphs
In the previous section, we assumed that we already have con-
structed an infinite dynamic execution dependency graph already
and showed how to convert it to a finite static equivalent graph.
However, it is not possible and useful to construct an infinite graph
from a stream program, instead, we could use a similar mechanism
to construct the static equivalent graph directly from a stream pro-

gram as we know the repetitive dependency structures across itera-
tions of a CSDF stream graph. Basically, we would like to construct
weight function T of a G = (V,E, T) from a CDSF stream graph.
The Algorithm 1 shows how to the direct translation process works.

Similar to infinite directed dependency graphs, equivalent static
graphs are constructed in two steps. First, executions of one actors
are replicated the same number of times that the actor fires within
one iteration of a CSDF model, each execution becomes one vertex
in the equivalent static graph. The next step is to add dependency
edges between vertices based on three kinds of dependency enu-
merated in Section 3.1 and methods presented in Section 3.2.1.

In the Algorithm 1, where get num reps function returns the
number of repetitions of an actor within one iteration of the whole
stream graph. The function compute rel iter exe computes rel-
ative iteration ir and relative execution er , we elaborate more on
the meanings of those return values.

7 2011/8/29

I I
I I
I I
I I I
I I 1

~:¢/
I I
I I
I I
I I
I
I

I

I

I I

·-·J·-·-Q
' I . I
·'·l / I

I I ·.,...

I 4· I .
~·-

1

I I

6 6

I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I
I
I
I
I
I

I
I
I

I
I

I
I
I
I
I
I

~ -: -_ -_:--¢t
v I I

I I
I I
I I
I I
I

I I
I

I\

I \ -/..._
I I /

I \ ~ --
: I -/''J!-

-1 - i / I

: I
I
I

/ -

/~
1 \ I I
I I ...,. I\

: \ f't~ _-: _:f\ \
I -- /'Y~ y,
_,- r I I I
I I I I

I I ; : I
I I
I I
I I

I

' ' ' 1 <.- r
1 I // :¢;

lr,... - I -- - ' - '

Algorithm 1 Algorithm for Constructing Static Equivalent Graphs
(V,E, T)← (∅, ∅, ∅)
sched← compute CSDF schedule(streamGraph)
{Create the set of vertices}
for all actor do

for exe = 1→ sched.get num reps(actor) do
{Each vertex is one actor execution in one iteration}
V ← V+ new vertex(actor, exe)

end for
end for
{Add data dependency edges}
for all v ∈ V do

for all actor ∈ upstream actors(v.actor) do
absolute exe← SDEPactor←v.actor(v.exe)
{Translate from absolute execution to relative one}
iteration← (absolute exe− 1)÷

sched.get num reps(actor)
exe← 1 + (absolute exe− 1) mod

sched.get num reps(actor)
u←get vertex(actor, exe)
e←new edge(u, v)
E ← E + e
T ← T + (weigth(e)← (−iteration))

end for
end for
{Add causality dependency edges}
for all v ∈ V do

if v.exe > 1 then
{Edges within one CSDF iteration have weight 0}
u← get vertex(v.actor, v.exe+ 1)
e← new edge(v, u)
E ← E + e
T ← T + (weigth(e)← 0)

else
{Edges to previous CSDF iterations have weight 1}
u← get vertex(v.actor,

sched.get num executions(actor))
e← new edge(v, u)
E ← E + e
T ← T + (weigth(e)← 1)

end if
end for
{Add control dependency edges}
for all actor do

if send teleport msg(actor) then
for exe = 1→ sched.get num reps(actor) do

for all recv ∈ get teleport receivers(actor) do
{Get minimal teleport message latency}
k1 ← get min latency(actor, recv)
{Determine relative iterations and}
{relative executions of teleport receivers}
(ir, er)←

compute rel iter exe(actor, recv, exe, k1)
s← get vertex(actor, exe)
r ← get vertex(recv, er)
e← new edge(s, r)
E ← E + e
{Relative iteration of each receiver}
{is the edge weight}
T ← T + (weigth(e)← ir)

end for
end for

end if
end for

Suppose that a teleport sender S at its absolute nth execution is
sending a message to a receiver R with minimum latency k1. Then
the absolute execution of the receiver R, mth will be computed as
in Section 3.2.1. We then use the conversion from absolute execu-
tions of actors to relative executions and iterations as in Section 3.2.
Suppose that S and R execute s = |S ∧ S| and r = |S ∧R| times
within one iteration of a stream graph respectively, then the relative
executions and iterations of S and R for their exections nth and
mth is computed as follows:

rS = n mod s, iS = n÷ s
rR = m mod r, iR = m÷ r

then ir = iS − iR and er = rR.

5.1 Uniqueness of Contructed Static Graph
LEMMA 2. ir is the same for all iS .

Proof: Suppose that we consider the same relative execution of S
in j iterations later of the stream graph, say iteration iS + j, then
the absolute execution of S is rS + (iS + j) ∗ s = n + s ∗ j. We
have two cases:

• IfR is downstream of S. Note that CSDF is periodic, therefore,
if SDEPS←R(m) = n + k1 then SDEPS←R(m + r ∗ j) =
n+ s ∗ j + k1 based on Equation 3. Thus ir = ((n+ s ∗ j)÷
s)− ((m+ r ∗ j)÷ r) = (iS + j)− (iR + j) = iS − iR.
• IfR is upstream of S thenm = SDEPR←S(n+k1). As CSDF is

periodic, therefore,m+r∗j = SDEPR←S(n+s∗j+k1) based
on Equation 3. Thus, ir = ((n+s∗j)÷s)−((m+r∗j)÷r) =
(iS + j)− (iR + j) = iS − iR.

Lemma 2 shows us a method to compute the relative iteration
ir . As ir is the same for all iS , therefore, we could take an arbitrary
iS that is large enough just that we could find the mth execution
of R from the nth execution of S where n = iS ∗ s + rS as in
Section 3.2.1. Based on founded m, we could can calculate iR and
rR as shown above, subsequently, we could find ir and er .

THEOREM 2. The constructed static graph from a CSDF stream
graph is unique.

Proof: As all steps in Algorithm 1 is deterministic, therefore the
result static graph is unique for one CSDF stream graph.

6. Finding Execution Schedule
We have shown our technique for checking for circular dependen-
cies given a CSDF stream graph without showing how to find a
schedule of actor executions under the constraints imposed by la-
tencies of teleport communications.

6.1 Auto-discovered Schedule
However, we realize that even in the presence of TM overlappings,
the current scheduling method in StreamIt will still work with-
out being changed. Basically, the circular dependency checking
shows the existence of at least one execution order that satisfies la-
tency constraints of TMs implemented in StreamIt based on a pull
scheduling algorithm.

6.2 Finding Schedule with Topological Sort of Actor
Executions

Although a schedule could be discovered automatically when ac-
tors run, it is beneficial to find precomputed schedules as it might
help optimize program performance.

One might thought that we already have execution dependency
graphs, we can run traditional topological sort algorithms on the

8 2011/8/29

graphs to obtain a schedule. However, the execution dependency
graphs are infinite, therefore, a naive sorting approach will not
work as it takes forever to finish. Instead, we need a systematic
numbering method that assigns values to vertices based on their
indices and structures of static graph.

We employ the topological sort method for acyclic dynamic pe-
riodic graphs described in Section 3.8 in [17]. For an 1-dimensional
acyclic periodic graph G∞, we could calculate a value A(vp) for
each vertex vp in the periodic graph such that if there is a vertex
vp ≺ ul in the periodic graph, then A(ul) < A(vp). The calcu-
lation is done first by constructing a static graph G = (V,E, T)
from G∞ and then solving the following linear program:

min
(u,v)∈E

σuv

πv − πu + γTuv ≥ 0 ∀(u, v) ∈ E
πv − πu + γTuv + σuv ≥ 1 ∀(u, v) ∈ E

σuv ≥ 0 ∀(u, v) ∈ E
where Tuv is the weight of edge (u, v) ∈ E.

The above linear program has a unique optimal solution for an
acylic periodic graph [17], let’s call it (σ∗, π∗, γ∗). Then the value
assignment procedure for each vertex vp is follows:

A(vp) = π∗v − γ∗p ∀v ∈ V (4)

7. Experiment
We have implemented the algorithm as a StreamIt backend that is
capable of checking for circular dependencies and topologically
sorting actor executions based on the algorithms we presented in
this paper.

Our circular dependency checking algorithm could correctly
detect invalid sets of TMs as in the examples we presented with
the same static dependency graphs generated.

For the example without any circular dependencies when la-
tency for TMs from E to A is -4 and for TMs from B to D is -1 as
in Figure 6(b), the topological sorting algorithm using linear pro-
gramming find γ∗ = 8 and π∗E5

= 0, π∗E4
= 1, π∗E3

= 2, π∗D2
=

3, π∗E2
= 5, π∗E1

= 6, π∗D1
= 7, π∗B3

= 8, π∗C2
= 8, π∗C1

=
11, π∗A3

= 9, π∗B2
= 9, π∗A2

= 12, π∗B1
= 12, π∗A1

= 13. Based
on those obtained values, we could find an execution order of ac-
tors for the graph that does not violate dependency constraints as
follows: (An1 , E

n−1
2) ≺ (An2 , B

n
1) ≺ (Dn−1

2 , Cn1) ≺ (En−1
3) ≺

(En−1
4 , An3 , B

n
2) ≺ (En−1

5 , Cn2 , B
n
3) ≺ (Dn

1) ≺ (En1).

8. Related Work
Thies et al. [30] introduce TM as a mechanism to relax the rigid-
ness of CSDF. They present an analysis that computes processing
time of TMs. However, this analysis is applicable to only non-
overlapping TMs. Consequently, CSDF graphs with overlapping
TMs cannot utilize this analysis. We address this limitation with our
dependency analysis method applicable to any CSDF graph with
TMs. Furthermore, we show that it is possible to compute sched-
ules for the CSDF graphs with arbitrary TM structures, which is
not well-defined in the work by Thies et al. [30].

Our method is closely related to the method by Rao and
Kailath [26] for scheduling digital signal processing algorithms on
arrays of processors, where they use reduced dependence graphs
similar to the periodic graphs, as a proxy for scheduling and map-
ping computation operators on arrays of processors. However, the
work mainly focuses on a class of applications equivalent to homo-
geneous SDF applications 5. Our work is for a more general class

5 Actors in homogeneous SDF applications only produce/consume one data
token at each output/input ports whenever they execute.

of signal processing applications with sporadic control messages
that require synchronizations between processes.

Zhou and Lee [31] tackle circular dependency analysis using
causality interfaces. The primary focus of their work is on dataflow
models. For SDF case, they do not account for control messages in
their SDF models. Moreover, we also support dependency analysis
for CSDF with overlapping TMs.

Horwitz et al. [12] propose a method for interprocedure pro-
gram slicing by constructing dependency graphs between program
statements with data and control dependency edges. The graph con-
struction method is similar to our method in that they construct
dependency graphs of statements and use the graphs to find de-
pendency between interprocedure statements. However, our work
exploits the CSDF domain specific program abstraction semantics
to analyse a specific criterion, meanwhile, interprocedure program
slicing is more a general approach which can be used in other test,
debugging or verifying processes.

The deadlock analysis method for communicating processes by
Brook and Roscoe [4] characterizes the properties and structures
of networks of communicating processes that can cause deadlocks,
for example, which kind of communication could cause the dining
philosophers problem. However, the method only works for some
network of processes structures.

There are several works on deadlock detection in distributed
systems [6, 27]. However, the algorithms proposed in those works
mainly focus on detecting deadlocks when they happens rather than
on deadlock avoidance and static deadlock analysis.

Wang et al. propose a method to avoid potential deadlocks in
multithreaded programs when sharing resources. The method trans-
lates control flow graphs into Petri nets and uses Petri net theories
to find potential deadlocks. Control logic code is then synthesized
to avoid potential deadlocks. This bears some similarity to our con-
struction of dependency graphs to detect for deadlocks. If there is
no deadlock, topological sorting of actors is done to find a suitable
order of executions.

Finally, as an extension of TMG in the StreamIt compiler, our
work is based on SDF/CSDF [3, 19] semantics. We also adopt
several results from dynamic/periodic infinite graphs [13, 16, 17,
24] and apply them to the TM circular checking and actor execution
sorting problems.

9. Conclusion
In this paper, we have introduced a method of checking for invalid
sets of specifications in the StreamIt language by exploiting its
periodic nature. In fact, the method is applicable to other scheduling
problems that have periodic dependencies.

We have implemented the method as a backend of the StreamIt
compiler, however, we have not finished code generation phase for
StreamIt applications by the time the paper is written. Our future
work would be implementing code generation and evaluate the ef-
fectiveness of TMG as well as doing research on applications hav-
ing overlapping of TMs. Furthermore, in the StreamIt compiler’s
backend, actors involved in TMG are not clustered because fused
actors could not be identified and fusing actors could cause false
dependencies, therefore, generated code could be not efficient. A
modular code generation method such as the one proposed by
Lublinerman et al. in [20] could avoid the problem of false depen-
dencies caused by fusing actors.

As TMG’s semantics are targeted the CSDF model of compu-
tation, it would be interesting to extend the work to the MDSDF
model of computation for image processing applications as in [28]
as MDSDF is a more natural way to express and compute image
and video processing applications.

9 2011/8/29

References
[1] Shail Aditya, Arvind, Jan-Willem Maessen, Lennart Augustsson, and

Rishiyur S. Nikhil. Semantics of ph: A parallel dialect of haskell. In
In proceedings from the Haskell workshop (at FPCA 95, pages 35–49,
1995.

[2] B. Bhattacharya and S. S. Bhattacharyya. Parameterized dataflow
modeling of dsp systems. In Proceedings of the Acoustics, Speech, and
Signal Processing, 2000. on IEEE International Conference - Volume
06, pages 3362–3365, Washington, DC, USA, 2000. IEEE Computer
Society.

[3] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cycle-static
dataflow. Signal Processing, IEEE Transactions on, 44(2):397 –408,
feb 1996.

[4] S. Brookes and A. W. Roscoe. Deadlock analysis in networks of
communicating processes, pages 305–323. Springer-Verlag New York,
Inc., New York, NY, USA, 1985.

[5] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fa-
tahalian, Mike Houston, and Pat Hanrahan. Brook for gpus: stream
computing on graphics hardware. In ACM SIGGRAPH 2004 Papers,
SIGGRAPH ’04, pages 777–786, New York, NY, USA, 2004. ACM.

[6] K. Mani Chandy, Jayadev Misra, and Laura M. Haas. Distributed
deadlock detection. ACM Trans. Comput. Syst., 1:144–156, May 1983.

[7] Charles Consel, Hedi Hamdi, Laurent Réveillère, Lenin Singaravelu,
Haiyan Yu, and Calton Pu. Spidle: a dsl approach to specifying stream-
ing applications. In Proceedings of the 2nd international conference
on Generative programming and component engineering, GPCE ’03,
pages 1–17, New York, NY, USA, 2003. Springer-Verlag New York,
Inc.

[8] Michael I. Gordon, William Thies, and Saman Amarasinghe. Exploit-
ing coarse-grained task, data, and pipeline parallelism in stream pro-
grams. In Proceedings of the 12th international conference on Archi-
tectural support for programming languages and operating systems,
ASPLOS-XII, pages 151–162, New York, NY, USA, 2006. ACM.

[9] Michael I. Gordon, William Thies, Michal Karczmarek, Jasper Lin,
Ali S. Meli, Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry
Hoffmann, David Maze, and Saman Amarasinghe. A stream compiler
for communication-exposed architectures. In Proceedings of the 10th
international conference on Architectural support for programming
languages and operating systems, ASPLOS-X, pages 291–303, New
York, NY, USA, 2002. ACM.

[10] Amir H. Hormati, Yoonseo Choi, Mark Woh, Manjunath Kudlur, Ro-
dric Rabbah, Trevor Mudge, and Scott Mahlke. MacroSS: macro-
SIMDization of streaming applications. In Proceedings of the fif-
teenth edition of ASPLOS on Architectural support for programming
languages and operating systems, ASPLOS ’10, pages 285–296, New
York, NY, USA, 2010. ACM.

[11] Amir H. Hormati, Mehrzad Samadi, Mark Woh, Trevor Mudge, and
Scott Mahlke. Sponge: portable stream programming on graphics
engines. SIGPLAN Not., 46:381–392, March 2011.

[12] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. In Proceedings of the ACM SIGPLAN 1988
conference on Programming Language design and Implementation,
PLDI ’88, pages 35–46, New York, NY, USA, 1988. ACM.

[13] K. Iwano and K. Steiglitz. Testing for cycles in infinite graphs with
periodic structure. In Proceedings of the nineteenth annual ACM
symposium on Theory of computing, STOC ’87, pages 46–55, New
York, NY, USA, 1987. ACM.

[14] G. Kahn. The semantics of a simple language for parallel program-
ming. In J. L. Rosenfeld, editor, Information processing, pages 471–
475, Stockholm, Sweden, Aug 1974. North Holland, Amsterdam.

[15] Ujval J. Kapasi, Scott Rixner, William J. Dally, Brucek Khailany,
Jung Ho Ahn, Peter Mattson, and John D. Owens. Programmable
stream processors. Computer, 36:54–62, August 2003.

[16] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. The
organization of computations for uniform recurrence equations. J.
ACM, 14:563–590, July 1967.

[17] Muralidharan S. Kodialam. The O-D shortest path problem and
connectivity problems on periodic graphs. PhD thesis, Sloan School
of Management, Massachusetts Institute of Technology, 1992.

[18] Andrew A. Lamb, William Thies, and Saman Amarasinghe. Linear
analysis and optimization of stream programs. In Proceedings of the
ACM SIGPLAN 2003 conference on Programming language design
and implementation, PLDI ’03, pages 12–25, New York, NY, USA,
2003. ACM.

[19] E.A. Lee and D.G. Messerschmitt. Static scheduling of synchronous
data flow programs for digital signal processing. IEEE Transactions
on Computers, 36(1):24–35, 1987.

[20] Roberto Lublinerman, Christian Szegedy, and Stavros Tripakis. Mod-
ular code generation from synchronous block diagrams: modularity
vs. code size. In Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, POPL
’09, pages 78–89, New York, NY, USA, 2009. ACM.

[21] William R. Mark, R. Steven Glanville, Kurt Akeley, and Mark J.
Kilgard. Cg: a system for programming graphics hardware in a c-like
language. In ACM SIGGRAPH 2003 Papers, SIGGRAPH ’03, pages
896–907, New York, NY, USA, 2003. ACM.

[22] P.K. Murthy and E.A. Lee. Multidimensional synchronous dataflow.
Signal Processing, IEEE Transactions on, 50(8):2064 –2079, aug
2002.

[23] Praveen K. Murthy and Shuvra S. Bhattacharyya. Buffer merging
- a powerful technique for reducing memory requirements of syn-
chronous dataflow specifications. ACM Transaction of Design Au-
tomation Electronic System., 9:212–237, April 2004.

[24] James B. Orlin. Some problems on dynamic/periodic graphs. Progress
in Combinatorial Optimization, 1984.

[25] Keshab K. Parhi and David G. Messerschmitt. Static rate-optimal
scheduling of iterative data-flow programs via optimum unfolding.
IEEE Trans. Comput., 40:178–195, February 1991.

[26] S.K. Rao and T. Kailath. Regular iterative algorithms and their imple-
mentation on processor arrays. Proceedings of the IEEE, 76(3):259
–269, mar 1988.

[27] P. Rontogiannis, G. Pavlides, and A. Levy. Distributed algorithm for
communication deadlock detection. Information Software Technology,
33:483–488, September 1991.

[28] Mainak Sen, Shuvra S. Bhattacharyya, Tiehan Lv, and Wayne Wolf.
Modeling image processing systems with homogeneous parameter-
ized dataflow graphs. In in Proceedings of IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP 05, pages
133–136, 2005.

[29] William Thies, Michal Karczmarek, and Saman Amarasinghe.
Streamit: A language for streaming applications. In International Con-
ference on Compiler Construction, Grenoble, France, Apr 2002.

[30] William Thies, Michal Karczmarek, Janis Sermulins, Rodric Rabbah,
and Saman Amarasinghe. Teleport messaging for distributed stream
programs. In Proceedings of the tenth ACM SIGPLAN symposium on
Principles and practice of parallel programming, PPoPP ’05, pages
224–235, New York, NY, USA, 2005. ACM.

[31] Ye Zhou and Edward A. Lee. A causality interface for deadlock anal-
ysis in dataflow. In Proceedings of the 6th ACM & IEEE International
conference on Embedded software, EMSOFT ’06, pages 44–52, New
York, NY, USA, 2006. ACM.

10 2011/8/29

	Introduction
	StreamIt Language and Compiler
	Control Messages
	Circular Dependencies

	Background
	Programming Model
	Teleport Messaging
	TMs Timing with SDEP
	SDEP Calculation

	Execution Dependencies
	Actor Execution Dependencies
	Directed Execution Dependency Graph
	Calculating Execution Dependencies
	Illustrating Example

	Checking for Circular Dependencies
	Dynamic/Periodic Graph
	Translating to Static Finite Equivalent Graph
	Graph Equivalence
	Detecting for Zero Cycles
	Illustrating Example

	Direct Construction of Static Graphs
	Uniqueness of Contructed Static Graph

	Finding Execution Schedule
	Auto-discovered Schedule
	Finding Schedule with Topological Sort of Actor Executions

	Experiment
	Related Work
	Conclusion

